Constants

Ramsey numbers

Proof of Ramsey's theorem for R(3,3)
Cmglee, via Wikimedia Commons. CC BY-SA 4.0.

Ramsey number $R(r,s)$ is the smallest number $n$ such that any two-coloring of the edges of the complete graph $K_n$ must contain either a monochromatic $K_r$ in the first color or a monochromatic $K_s$ in the second color.

Wikipedia Wikidata MathWorld Metamath MSC2020 PlanetMath

Compilation status: Sourced


Packing unit squares in a square

Optimal packing of 5 unit squares in a square
Amit6, via Wikimedia Commons. Public domain.

$s(n)$ is the side of the smallest square into which $n$ unit squares can be packed.

Wikipedia Wikidata MathWorld

Compilation status: Initial

1
$1$
2
$2$
3
$2$
4
$2$
5
$2 + \frac{1}{\sqrt{2}}$
6
$3$
7
$3$
8
$3$
9
$3$
10
$3 + \frac{1}{\sqrt{2}}$
11
$2 + \frac{4}{\sqrt{5}}$
${\approx}3.8771$
12
$2 + \frac{4}{\sqrt{5}}$
$4$
13
$3.8437$
$4$
14
$4$
15
$4$
16
$4$
17
$\frac{40\sqrt{2}+19}{17}$
${\approx}4.6756$
18
$\frac{40\sqrt{2}+19}{17}$
$\frac{7+\sqrt{7}}{2}$
19
$6\sqrt{2}-4$
$3+\frac{4\sqrt{2}}{3}$
20
$6\sqrt{2}-4$
$5$
21
$4.7438$
$5$
22
$2\sqrt{2}+2$
$5$
23
$5$
24
$5$
25
$5$
26
$2\sqrt{2}+\frac{27+2\sqrt{10}}{13}$
$\frac{7}{2}+\frac{3\sqrt{2}}{2}$
27
$2\sqrt{2}+\frac{27+2\sqrt{10}}{13}$
$5+\frac{1}{\sqrt{2}}$
28
$2\sqrt{2}+\frac{6}{\sqrt{5}}$
$3+2\sqrt{2}$
29
$2\sqrt{2}+\frac{6}{\sqrt{5}}$
${\approx}5.9344$
30
$2\sqrt{2}+\frac{6}{\sqrt{5}}$
$6$
31
$5.6415$
$6$
32
$?$
$6$
33
$?$
$6$
34
$6$
35
$6$
36
$6$
37
$2\sqrt{2}+\frac{113+10\sqrt{3}}{37}$
${\approx}6.5987$
38
$2\sqrt{2}+\frac{113+10\sqrt{3}}{37}$
$6+\frac{1}{\sqrt{2}}$
39
$2\sqrt{2}+\frac{113+10\sqrt{3}}{37}$
${\approx}6.8189$
40
$2\sqrt{2}+\frac{8}{\sqrt{5}}$
$4+2\sqrt{2}$
41
$2\sqrt{2}+\frac{8}{\sqrt{5}}$
${\approx}6.9473$
42
$?$
$7$
43
$?$
$7$
44
$?$
$7$
45
$?$
$7$
46
$?$
$7$
47
$7$
48
$7$
49
$7$
50
$2\sqrt{2}+\frac{101+3\sqrt{14}}{25}$
${\approx}7.5987$
51
$2\sqrt{2}+\frac{101+3\sqrt{14}}{25}$
${\approx}7.7044$
52
$2\sqrt{2}+\frac{101+3\sqrt{14}}{25}$
$7+\frac{1}{\sqrt{2}}$
53
$2\sqrt{2}+\frac{101+3\sqrt{14}}{25}$
${\approx}7.8231$
54
$?$
${\approx}7.8488$
55
$?$
${\approx}7.9871$
56
$?$
$8$
57
$?$
$8$
58
$?$
$8$
59
$?$
$8$
60
$?$
$8$
61
$?$
$8$
62
$8$
63
$8$
64
$8$
65
$2\sqrt{2}+\frac{71}{13}$
$5+\frac{5}{\sqrt{2}}$
66
$2\sqrt{2}+\frac{71}{13}$
$3+4\sqrt{2}$
67
$2\sqrt{2}+\frac{71}{13}$
$8+\frac{1}{\sqrt{2}}$
68
$2\sqrt{2}+\frac{71}{13}$
$\frac{15}{2}+\frac{\sqrt{7}}{2}$
69
$?$
${\approx}8.8562$
70
$?$
${\approx}8.9121$
71
$?$
${\approx}8.9633$
72
$?$
$9$
73
$?$
$9$
74
$?$
$9$
75
$?$
$9$
76
$?$
$9$
77
$?$
$9$
78
$?$
$9$
79
$9$
80
$9$
81
$9$
82
${\approx}9.2667$
$6+\frac{5}{\sqrt{2}}$
83
${\approx}9.2667$
$4+4\sqrt{2}$
84
${\approx}9.2667$
$9+\frac{1}{\sqrt{2}}$
85
${\approx}9.2667$
$\frac{11}{2}+3\sqrt{2}$
86
$?$
$\frac{17+\sqrt{7}}{2}$
87
$?$
${\approx}9.8520$
88
$?$
${\approx}9.9018$
89
$?$
$5+\frac{7}{\sqrt{2}}$
90
$?$
$10$
91
$?$
$10$
92
$?$
$10$
93
$?$
$10$
94
$?$
$10$
95
$?$
$10$
96
$?$
$10$
97
$?$
$10$
98
$10$
99
$10$
100
$10$


Busy Beaver shift function

Simplified spacetime diagram of the fifth busy beaver machine
--MULLIGANACEOUS--, via Wikimedia Commons. Public domain.

The Busy Beaver shift function $BB(n)$ ($S(n)$) is the maximal number of steps that an n-state Turing machine can make on an initially blank tape before eventually halting.

Wikipedia Wikidata MathWorld OEIS

Compilation status: Initial


Busy Beaver ones function

Rule set for 4-state busy beaver
OrdinaryArtery, via Wikimedia Commons. CC BY-SA 4.0.

The Busy Beaver ones function $\Sigma(n)$ (Rado’s sigma function) is the maximal number of 1s that an n-state Turing machine can print on an initially blank tape before eventually halting.

Wikipedia Wikidata MathWorld OEIS

Compilation status: Initial


Kissing numbers

Kissing number 3
Robertwb at English Wikipedia, via Wikimedia Commons. CC BY-SA 3.0.

The kissing number of $\mathbb{R}^n$ is the maximum number of non-overlapping unit spheres that can touch a central unit sphere in $\mathbb{R}^n$.

Wikipedia Wikidata MathWorld

Compilation status: Initial


Degree-diameter problem

$N(d,k)$ is the largest possible number of vertices in a graph of maximum degree $d$ and diameter $k$.

Wikipedia Wikidata MathWorld

Compilation status: Initial

d\k 2 3 4 5 6 7 8 9 10
3 $10$ $20$ $38$ $70$
$?$
$132$
$?$
$196$
$?$
$360$
$?$
$600$
$?$
$1250$
$?$
4 $15$ $41$
$?$
$98$
$?$
$364$
$?$
$740$
$?$
$1320$
$?$
$3243$
$?$
$7575$
$?$
$17703$
$?$
5 $24$ $72$
$?$
$212$
$?$
$624$
$?$
$2772$
$?$
$5516$
$?$
$17030$
$?$
$57840$
$?$
$187056$
$?$
6 $32$ $111$
$?$
$390$
$?$
$1404$
$?$
$7917$
$?$
$19383$
$?$
$76891$
$?$
$331387$
$?$
$1253615$
$?$
7 $50$ $168$
$?$
$672$
$?$
$2756$
$?$
$12264$
$?$
$53020$
$?$
$249660$
$?$
$1223050$
$?$
$6007230$
$?$
8 $57$
$?$
$253$
$?$
$1100$
$?$
$5115$
$?$
$39672$
$?$
$131137$
$?$
$734820$
$?$
$4243100$
$?$
$24897161$
$?$
9 $74$
$?$
$585$
$?$
$1640$
$?$
$8268$
$?$
$75893$
$?$
$279616$
$?$
$1697688$
$?$
$12123288$
$?$
$65866350$
$?$
10 $91$
$?$
$650$
$?$
$2331$
$?$
$13203$
$?$
$134690$
$?$
$583083$
$?$
$4293452$
$?$
$27997191$
$?$
$201038922$
$?$
11 $104$
$?$
$715$
$?$
$3200$
$?$
$19620$
$?$
$156864$
$?$
$1001268$
$?$
$7442328$
$?$
$72933102$
$?$
$600380000$
$?$
12 $133$
$?$
$786$
$?$
$4680$
$?$
$29621$
$?$
$359772$
$?$
$1999500$
$?$
$15924326$
$?$
$158158875$
$?$
$1506252500$
$?$
13 $162$
$?$
$856$
$?$
$6560$
$?$
$40488$
$?$
$531440$
$?$
$3322080$
$?$
$29927790$
$?$
$249155760$
$?$
$3077200700$
$?$
14 $183$
$?$
$916$
$?$
$8200$
$?$
$58095$
$?$
$816294$
$?$
$6200460$
$?$
$55913932$
$?$
$600123780$
$?$
$7041746081$
$?$
15 $187$
$?$
$1215$
$?$
$11712$
$?$
$77520$
$?$
$1417248$
$?$
$8599986$
$?$
$90001236$
$?$
$1171998164$
$?$
$10012349898$
$?$
16 $200$
$?$
$1600$
$?$
$14640$
$?$
$132496$
$?$
$1771560$
$?$
$14882658$
$?$
$140559416$
$?$
$2025125476$
$?$
$12951451931$
$?$
17 $274$
$?$
$1610$
$?$
$19040$
$?$
$133144$
$?$
$3217872$
$?$
$18495162$
$?$
$220990700$
$?$
$3372648954$
$?$
$15317070720$
$?$
18 $274$
$?$
$1620$
$?$
$23800$
$?$
$171828$
$?$
$4022340$
$?$
$26515120$
$?$
$323037476$
$?$
$5768971167$
$?$
$16659077632$
$?$
19 $338$
$?$
$1638$
$?$
$23970$
$?$
$221676$
$?$
$4024707$
$?$
$39123116$
$?$
$501001000$
$?$
$8855580344$
$?$
$18155097232$
$?$
20 $381$
$?$
$1958$
$?$
$34952$
$?$
$281820$
$?$
$8947848$
$?$
$55625185$
$?$
$762374779$
$?$
$12951451931$
$?$
$78186295824$
$?$


Cages

Tutte-Coxeter graph
David Benbennick, via Wikimedia Commons. Public domain.

$n(k,g)$ is the order of a $(k,g)$-cage, a $k$-regular graph of girth $g$ of minimum order.

Wikipedia MathWorld

Compilation status: Initial

k\g 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 $4$ $6$ $10$ $14$ $24$ $30$ $58$ $70$ $112$ $126$ $202$
$272$
$258$
$384$
$384$
$620$
$512$
$960$
4 $5$ $8$ $19$ $26$ $67$ $80$ $?$
$275$
$?$
$384$
$?$
$?$
$728$ $?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
5 $6$ $10$ $30$ $42$ $?$
$152$
$170$ $?$
$?$
$?$
$1296$
$?$
$2688$
$2730$ $?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
6 $7$ $12$ $40$ $62$ $?$
$294$
$312$ $?$
$?$
$?$
$?$
$?$
$?$
$7812$ $?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
7 $8$ $14$ $50$ $90$ $?$
$?$
$?$
$672$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$32928$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
8 $?$
$?$
$?$
$?$
$67$
$80$
$114$ $?$
$?$
$?$
$800$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$39216$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
9 $?$
$?$
$?$
$?$
$86$
$96$
$146$ $?$
$1152$
$?$
$1170$
$?$
$?$
$?$
$?$
$?$
$74752$
$?$
$74898$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
10 $?$
$?$
$?$
$?$
$103$
$124$
$182$ $?$
$?$
$?$
$1640$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$132860$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
11 $?$
$?$
$?$
$?$
$124$
$154$
$224$
$240$
$?$
$?$
$?$
$2618$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$319440$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
12 $?$
$?$
$?$
$?$
$147$
$203$
$266$ $?$
$?$
$?$
$2928$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$354312$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
13 $?$
$?$
$?$
$?$
$174$
$230$
$314$
$336$
$?$
$?$
$?$
$4342$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$738192$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
14 $?$
$?$
$?$
$?$
$199$
$288$
$366$ $?$
$?$
$?$
$4760$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$804468$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
15 $?$
$?$
$?$
$?$
$230$
$312$
$422$
$462$
$?$
$?$
$?$
$7648$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$1957376$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
16 $?$
$?$
$?$
$?$
$259$
$336$
$482$
$504$
$?$
$?$
$?$
$8092$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$2088960$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
17 $?$
$?$
$?$
$?$
$294$
$448$
$546$ $?$
$?$
$?$
$8738$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$2236962$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
18 $?$
$?$
$?$
$?$
$327$
$480$
$614$ $?$
$?$
$?$
$10440$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$3017196$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
19 $?$
$?$
$?$
$?$
$364$
$512$
$686$
$720$
$?$
$?$
$?$
$13642$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$4938480$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
20 $?$
$?$
$?$
$?$
$403$
$576$
$762$ $?$
$?$
$?$
$14480$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$5227320$
$?$
$?$
$?$
$?$
$?$
$?$
$?$
$?$


de Bruijn-Newman constant

The de Bruijn-Newman constant $\Lambda$ is defined via the zeros of a certain function $H(\lambda,z)$, where $\lambda$ is a real parameter and $z$ is a complex variable. More precisely, $H(\lambda, z):=\int_{0}^{\infty} e^{\lambda u^{2}} \Phi(u) \cos (z u) \, du$, where $\Phi$ is the super-exponentially decaying function $\Phi(u) = \sum_{n=1}^{\infty} (2\pi^2n^4e^{9u}-3\pi n^2 e^{5u} ) e^{-\pi n^2 e^{4u}}$ and $\Lambda$ is the unique real number with the property that $H$ has only real zeros if and only if $\lambda\geq \Lambda$.

Wikipedia Wikidata MathWorld

Compilation status: Sourced


Van der Waerden numbers

$W(r,k)$ is the smallest number $n$ such that if the integers $1$ to $n$ are colored with $r$ colors, there must be a monochromatic arithmetic progression of length $k$.

Wikipedia Wikidata MathWorld

Compilation status: Initial


Stamp folding

Folding three stamps
Robert Dickau, via Wikimedia Commons. CC BY-SA 3.0.

The number of distinct ways to fold a strip of $n$ labeled stamps.

Wikipedia Wikidata MathWorld OEIS

Compilation status: Initial


Map folding

Folding a 2x2 grid
Robert Dickau, via Wikimedia Commons. CC BY-SA 3.0.

The number of distinct ways to fold an $m \times n$ rectangle into a unit square.

Wikipedia Wikidata MathWorld OEIS

Compilation status: Initial


Disk covering problem

The smallest value $r(n)$ such that $n$ disks of radius $r(n)$ can be arranged to cover the unit disk.

Wikipedia MathWorld

Compilation status: Initial


Circle packing in an equilateral triangle

Packing 11 unit circles in an equilateral triangle
OwOUwUOwU, via Wikimedia Commons. CC BY-SA 4.0.

The side length of the smallest equilateral triangle into which $n$ unit circles can be packed.

Wikipedia

Compilation status: Initial


Minimal superpermutation problem

The distribution of permutations in a 3 symbol superpermutation
IntegralPython, via Wikimedia Commons. CC BY-SA 4.0.

$L(n)$ is the shortest length of a string that contains each permutation of $n$ symbols as a substring.

Wikipedia Wikidata

Compilation status: Initial