Van der Waerden number $W(2,4)$
The smallest number $n$ such that if the integers $1$ to $n$ are colored with $2$ colors, there must be a monochromatic arithmetic progression of length $4$.
Value: $35$
Updates
-
1970
Lower bound: $35$
Chvátal, V. (1970). Some unknown van der Waerden numbers. Combinatorial structures and their applications, 31-33.
[via Van der Waerden number - Wikipedia] -
1970
Upper bound: $35$
Chvátal, V. (1970). Some unknown van der Waerden numbers. Combinatorial structures and their applications, 31-33.
[via Van der Waerden number - Wikipedia]